Paleolithic diets, A Prescriptive approach for Current Chronic Ailments ?

Dr.Kamala Krishnaswamy, M.D

FASc, FAPASc, FAMS, FNASc, FNA, FIUNS, FNAAS, FTWAS

Former Director, National Institute of Nutrition Former President, Nutrition Society of India, Former EC member IUNS & FANS. Member Governing Body, Nutrition Foundation of India EC member, NAMS, Senior Advisor, Madras Diabetic RF, Member ILSI, India Board of Trustees

Chronic Diseases – Fact File

- 1. Global burden of chronic diet related NCDs is a serious cause for concern (Mortality is twice that of infectious diseases)
- 2. It is continuously rising in developing countries and 66% of deaths are due to NCDs in developing countries
- 3. Obesity / over weight are precursors of NCDs and are high even in low income groups
- 4. NCDs impose a significant burden on health systems and inflict cost on society and impact national development
- 5. Nutrition transition/physical inactivity adds to the burden of NCDs
- 6. Demographic changes, Urbanization, industrialization, mechanization and globalization compound the scenario
- 7. 80% occur in low middle income countries & 50% are women
- 8. Tobacco/alcohol use complicates the issue

Life styles – Faulty diets and physical inactivity and adverse habits are important determinants of NCDs

Deaths in millions due to Chronic diseases

- 7.5 die as a result of raised BP
- 6.0 die as a result of tobacco
- 3.2 die as a result of physical inactivity
- 2.8 die as a result of being overweight or obese
- 2.6 die as a result of A TC levels
- 2.3 die as a result of harmful use of alcohol
- 1.7 die as a result of low fruit and vegetable intake

Out of 57 million deaths-36 million (63%) in 2008 were due to NCD, With No action deaths would increase by 17% from 2005 to2015 WHO, 2005, 2011-WHR, 2010 KKS-2012

Important Risk Factors

Over weight / obesity – Central adiposity Inadequate intake of vegetable and fruits – MN, phytoN, fibre High intakes of energy dense foods – fat / sugar High intake of salt Physical activity - home, school, work, transport, recreation Excess use of Tobacco & alcohol High blood pressure High blood concentrations of lipids(
TC, LDLc, Oxidised LDL, small dense LDL, triglycerides, post prandial lipemia, ✓HDL cholesterol), ↑Homocysteinemia **Glucose intolerance (Insulin resistance) Increased prothrombotic and proinflammatory state Poor maternal / fetal / early infant / child nutrition**

Metabolic or X syndrome –common in Asians

Ancestral Diets and Thrifty Genotype

KEY EVENTS IN THE EVOLUTION OF THE HUMAN

Appearance of Homo habilis Appearance of anatomically modern Humans (Homo sapiens sapiens) Emergence of agriculture Industrial revolution Modern society 2 million years 40-50,000 years

10,000 years 200 years < 100 years

HUMAN DIETS / GENES

Homoerectus (1.7 million years) Homo sapien sapiens (50,000 years) Agricultural Era (Post pleistocene) Agricultural revolution Nourishing plant species Available

- **Utilized as food**
- 90% of food supply
- 8 Cereal grains

- Non-cereal Hunter Gatherer Society
- Animal food with uncultivated plants
- 10,000 years ago
- < 500 generations
- Limited
- 195,000 species
 - 0.1% or < 300
- 17 species
 - 56% of Food energy 50% of Protein

KKS-201

Genetically we are programmed for non-cereal nutrition requirement and diets of Paleolithic period

Ancestral Genes

- Evolution at the molecular level is highly conservative
- Genotype evolved to confer survival and reproductive advantage in stone age (IR) (Fasting & feasting periods)
- The genes of Finns and Australian aborigines living miles apart are similar
- The genes evolved are disadapted to current life styles (THRIFTY GENOTYPE)
- Physical activity of our ancestors was strenuous
- Foetal programming in uterus in response to under nutrition (THRIFTY PHENOTYPE)

Reconstruction of life of stone age humans-Data Sources

- Human / animal skeletal remains (anatomical, microscopic, biochemical)
- Radio isotope analysis
- Archeological (living sites)
- Botanical remains (electron microscopy of pollen, spores, seeds, husks)
- Implements
- Uncultivated plant analysis
- Proximate analysis of game animals, fish, shell fish
- Cave or rock wall paintings
- HG living in 20 /21st century (biochemical markers)

Stone age or Cave man's diets

Terrestrial wild animal meat Internal organs and bone marrow Fish / shell fish / other aquatic foods Birds (wild game) Wild plants Certain tubers / roots

Nutritional requirements of man are shaped by foods of pre agriculture era

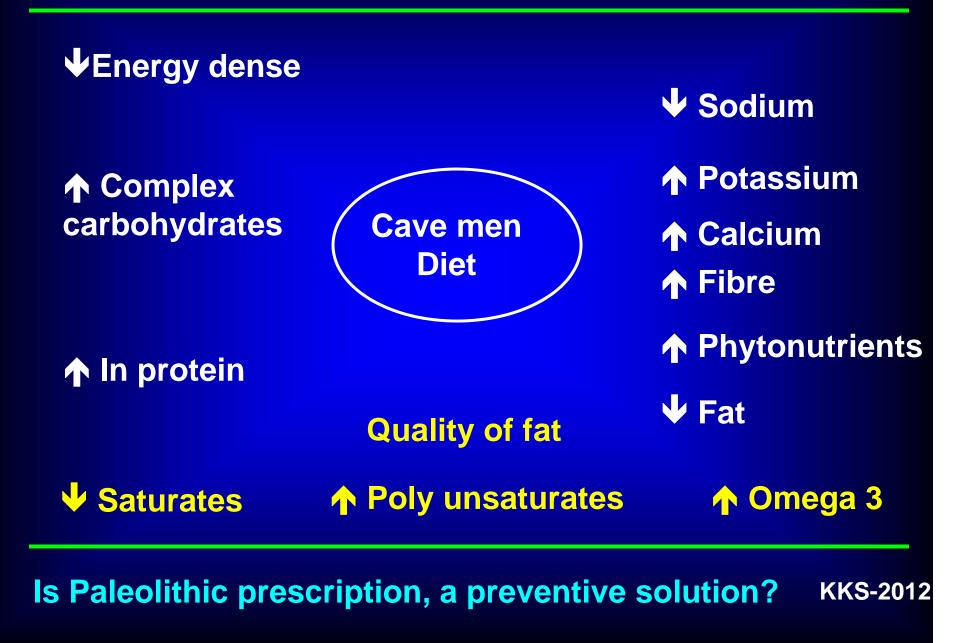
Humans were taller, muscular, robust and brain size was large (Encephalisation)

Average Daily Macronutrient Intake For Late Paleolithic Human Beings (3000 Kcal Diet – 35% Meat and 65% Vegetable Foods)

INTAKE (g)

PROTEIN	251.1
Animal	190.7
Vegetables	60.4
FAT	71.3
Animal	29.7
Vegetables	41.6
CARBOHYDRATE	333.6
FIBER	45.7

Source : Eaton and Konner, NEJM, 312(5), 283.


Paleolithic Diets Current Diets			
BMI	21.2 kg/m ²	>25 kg/m²	
Energy Intake	2800 kcal/day	>2500 kcal/day	
Carbohydrates (TE%)	35%	>45-65%	
Honey (TE%)	2-3%	Sugar ≤ 25%	
Fibre	>100g	<25-40g	
Cereals	Nil	40-70%	
Dairy products	Nil	Plenty	
Wild Veg & fruits	Plenty (70-90%)	23% of CH	
Phytic Acid	Minimal	Large amounts	
Mineral bioavailability	High	Low	
Acid base(K/Na)	Alkaline	Acidic	
Protein	35%	20%	

Abstracted from Eaton SB, 2006; Cordain et al 2000

	Paleolithic Diets	Current Diets
Fat	35%	>35%
Saturated Fat	7.5%	>10%
PUFA	High	Low
N6 : N3 ratio	2:1	>10:1
Trans fats	3-5%	>5%
Cholesterol(mg)	400-500	300
Serum cholesterol	3.2 mmol/l	5.3 mmol/l
Carcass fat content	3.5%	25-30%
(Animals)		

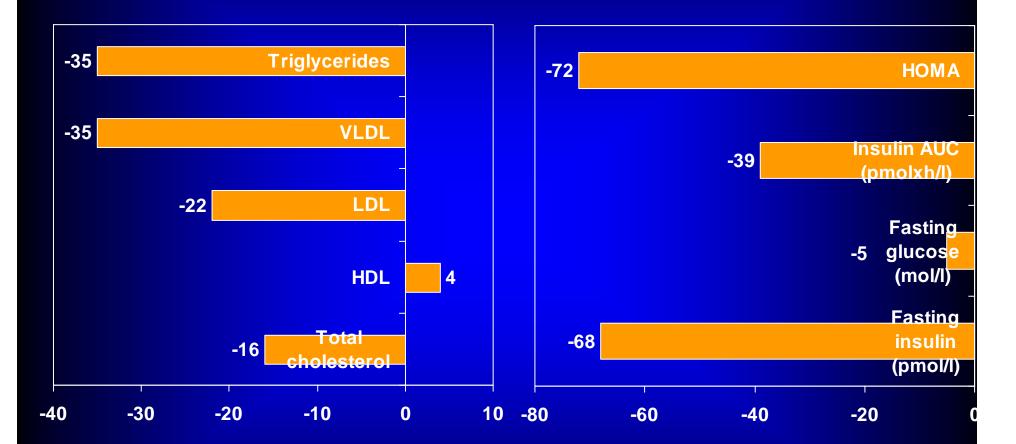
Abstracted from Eaton SB, 2006; Cordain et al 2000

Nutrients of Cave men diet

Usual vs Paleo diet intake (Mean S.D.)

Diet factors	delta	P-value
Energy (Kcal)	$+329 \pm 840$	NS
Protein (g)	$+91 \pm 50$	0.0006
Carbohydrates (g)	-5 ± 126	NS
Total fat (g)	-3 ± 53	NS
Saturated fat (g)	-16 ± 21	0.05
Monounsaturated fat (g)	$+13 \pm 20$	NS
Polyunsaturated fat (g)	$+20 \pm 5$	<0.0001
Cholesterol (mg)	-187 ± 275	NS
Calcium (mmol)	-2 ± 10	NS
Sodium (mmol)	-92 ± 82	0.01
Potassium (mmol)	$+193 \pm 42$	< 0.0001
Phosphate (mmol)	$+22 \pm 19$	0.01
Magnesium (mmol)	$+14 \pm 6$	< 0.0001

PD : lean meat, fruit ,fish, leafy and cruciferous veg, eggs, nuts excluding dairy products, sugar, soft drinks, cereal grains, beans, refined fats


Source : LA Frassetto LA et al EJCN-2009

Resting blood pressure measurements and brachial artery reactivity data

Factor	Days –2 to 0 (usual diet)	Days 15 to 17 (Paleo diet)	P-value
Systolic BP (mmHg)	116±10	-2.6±5.1	NS
Diastolic BP (mmHg)	71±6	-3.4±2.7	0.006
MAP (mmHg)	86±7	-3.1±2.9	0.01
Brachial artery diameter at baseline (BAD; mm)	3.97±0.88	3.98±0.85	0.14
Peak brachial artery diameter during hyperemia (pkFMD; mm)	4.25±0.83	4.35±0.73	0.05
Absolute difference pkFMD-BAD; mm)	0.288±0.089	0.371±0.158	0.06

Abbreviations: BAD - brachial artery diameter pkFMD- peak BAD during compensatory hyperemia following blood flow occlution

Effect of the paleolithic diet on metabolic variables Delta values (mmoles/l)

Source : LA Frassetto LA et al EJCN-2009

Usual vs Paleo diet intake and urine output comparisons
(Mean S.D.)

Diet factors	delta	P-value
pH ^a	$+0.34 \pm 0.46$	NS
UNaV (mmol)	-89 ± 73	0.007
UCIV (mmol)	-76 ± 63	0.007
UKV (mmol)	$+71 \pm 56$	0.004
UKV/UNaV (mmol)	$+1.8 \pm 0.6$	< 0.0001
CrCl (ml/min)	$+4\pm 33$	NS
UCa/CrV (mg/100 mg)	-40 ± 30	0.0009

Source : LA Frassetto LA et al EJCN-2009

Paleolithic diet vs Other Diets

On PD diet compared to Mediterranean diet or diabetic diet or original mixed diets Either in normals, IH, diabetes, The following results were obtained Duration : 3wks – 3 months **Results:** in glycemic load 🔸 in BMI ✓ in waist circumference in systolic BP **PAI - I** fasting insulin and 2 hr blood glucose

Sources : Several

PROBLEMS WITH CEREAL GRAINS

CONSUMPTION

No vitamin A No β-carotene

No vitamin B12 Vitamins, Minerals Phytochemicals

Processing No vitamin C Antinutrients Bioavailability

Poor Metabolism

- HISTORICALLY REMOTE
- _
- -

-

wild Plants vegetables, fruits

Scurvy Niacin B6, Biotin

> Biotin Biotin carboxylase

 BIOLOGICALLY RECENT
 Vit. A Deficiency
 Except yellow maize

Plant sources

Low

B. Complex
Deficiencies ↑
Pellagra
Homocysteine ↑

Linoleic to ↓ Arachidonic (Chain elongation)

MINERALS ON CEREAL FOODS

 \checkmark

 \uparrow

 \uparrow

- Phytates Iron, Zn, Cu absorption
- Poor sources Calcium (bioavailability)
- Low Ca / P Bone growth and metabolism
- Ca / Mg Ca excretion
- 1-25(OH)₂D₃ Secondary hyperparathyroidism

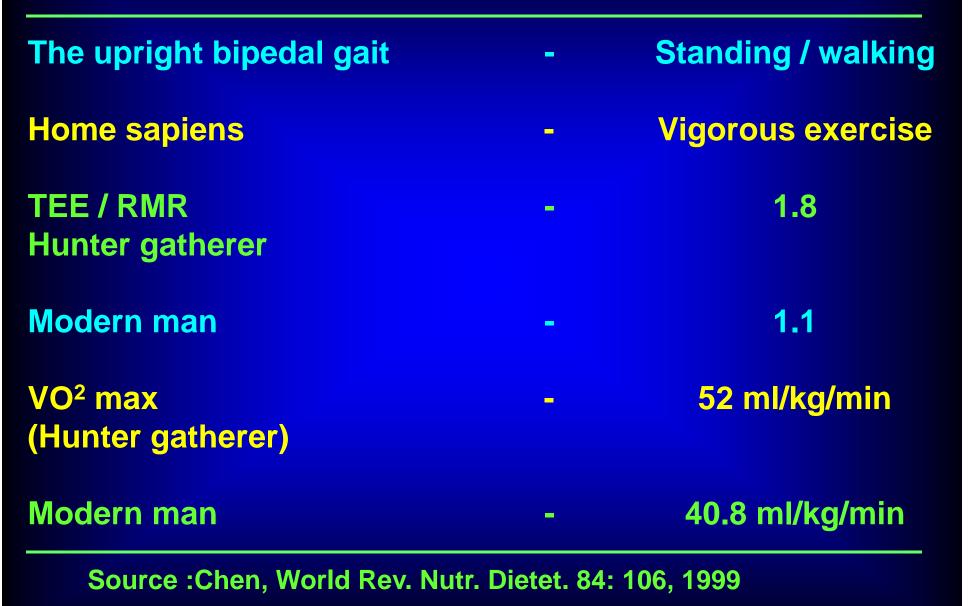
OTHER MICRONUTRIENTS AND CEREALS

Fat	N3 fatty acids	Brain ↓ Retinal function ↓
		Thrombosis Inflammation Lipid LBW LDL Oxidation
Aminoacids (Imbalance)	Essential Conditionally essential Non-essential	Growth Body mass Immune function Muscular strength
Poor source	Taurine	Platelet aggregation ↑ Free radical scavenger↓ anti-arrhythmic action ↓ Retinal function ↓

Evolution of food system in India in the recent past

Post wars Post independence Import of foods **Green revolution Support prices** Industrialization/ Processing Dairy (White revolution) Vegetable oils(yellow revolution) \uparrow N6/N3 ratio Hydrogenation, baking Large scale sugar prod. Veg.,/fruits (rainbow revolution) **Functional foods**

- ↑ Poverty / hunger
- ✓ Staples, PEM, MND


Mostly grains

- ↑ Cereals & Erosion of millets
- Pulses and Diversity
- fibre and MN
- ▲ Saturated Fat
- - **↑** Saturated, Trans fat
 - **↑** confectionary, SSB, fructose bevarages
 - ↑ farm losses, poor technology
 - lycopene, beta-carotene, sterols

Climax : Faulty Dietary Habits

EVOLUTION AND EXERCISE

OBESITY / INSULIN RESISTANCE

TYPE	METABOLIC DISTURBANCES
Gluteofemoral	Moderate Insulin Resistance Low CHD Risk
Truncal / Abdominal	 Insulin Resistance TG LDL HDL Synthesis CHD Risk
Visceral Obesity	 Marked Insulin Resistance Glucose intolerance TriglycerideLipase VLDL Secretion HDL Synthesis Highest CHD Risk

Dietary Recommendations

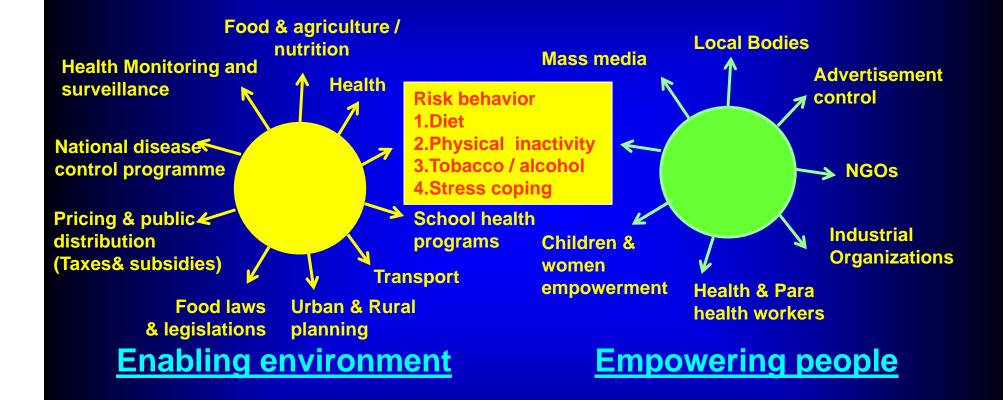
- To achieve energy balance and appropriate weight for height
- To maintain weight (among adults) such that BMI is in the range of 18.5- 23 kg/m² and to avoid weight gain (>5 kg) during adult life & central adiposity
- To be aware of fattening trajectory (adiposity rebound) in children
- Exclusive breastfeeding and appropriate weaning foods.
- To promote growth (0- 2 years)- linear growth and muscle mass
- To restrict total fat, shift fat consumption from saturated to unsaturated (proper fatty acids)
- To eliminate trans fatty acids
- Diets to provide low glycemic carbohydrates and fibre
- To increase fruits, vegetables, legumes, whole grains and nuts
- Limit intake of free sugars and salt
- Use beverages such as green tea and lime water liberally
- To be active and remain stress free.

Ranges of intake goals for long term health

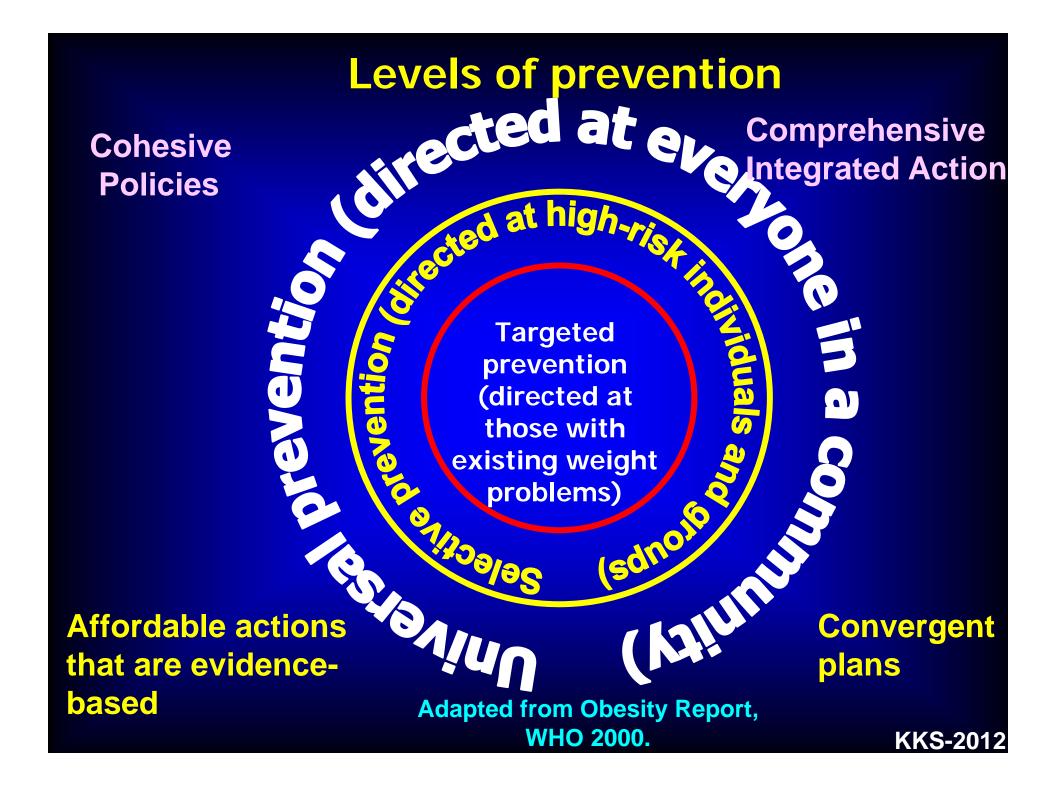
Dietary factor	Goals
Total fat	15-35% energy
Saturated fatty acids	< 10% energy
Polyunsaturated fatty acids (PUFAs)	6-11% energy
n-6 Polyunsaturated fatty acids (PUFAs)	2.5-9% energy
n-3 Polyunsaturated fatty acids (PUFAs)	0.5-2% energy
DHA/EPA	250-2000mg/d
Trans fatty acids	< 1% energy
Monounsaturated fatty acids (MUFAs)	By difference
Total carbohydrates	55-70% energy
Free sugars	< 10 % energy
Protein	10-15% energy/d
Cholesterol	< 300 mg/day
Sodium chloride (sodium)	<5 g/day (< 2 g/day)
Fruits and vegetables	≥ 400 g/day
Total dietary fibre	From foods (25 – 30gms)

FAO / WHO,2010

PHYSICAL ACTIVITY

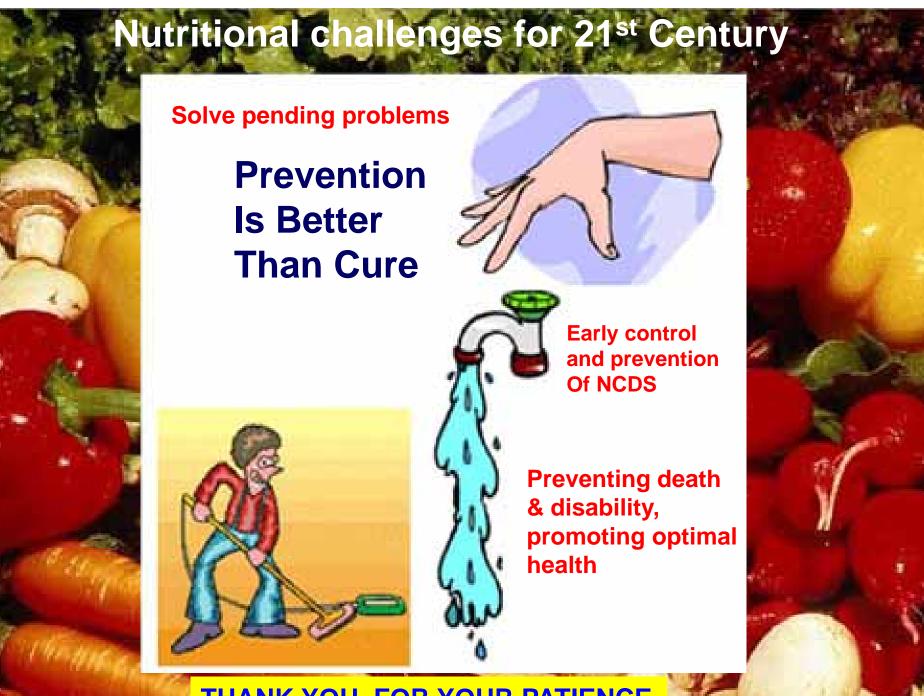

Physical activity	Duration	Health benefits
Moderate intensity Brisk walking	30 min/ daily	Cardiovascular Metabolic health)
Moderate Intensity Brisk walking	60 min/ daily	Body wt. reduction
High intensity Resistance Training	Twice a week	Musculo skeletal health

DIETARY PYRAMID FOR INDIANS



Public health Interventions Taking Steps Towards a Healthy India

Multisectoral, multi disciplinary & multi level interventions Interministerial & Interdepartmental convergence Coordinated Policies (Consensus Building) Flexible health system & Energetic profession



If you want one year of prosperity, grow grain. If you want ten years of prosperity, grow trees. If you want one hundred years of prosperity, grow people.

Chinese Proverb

THANK YOU FOR YOUR PATIENCE